본문 바로가기

과학철학/Summary

확증주의

증거 e로부터 가설 h가 성립한다: dev.e(h)

Hempel's Comfirmation("HC") 

e contains constants only

(ⅰ)e Hempel-confimrs h e entails dev.e(h)

(ⅱ)e indirectly Hempel-confirms h  e entails dev.e(s) for some s, which entails h 


Raven's Paradox

Let h=For every x, If Rx then Bx

& e= RaBa

Then e does Hempel-confirm h by HC. 

Let e* = -Ba∧-Ra

&h* = For every x, if -Bx then -Rx

Then e* confirms h* by HC. 

&h* entails h

So, e* indirectly confirms h by HC(ⅱ).


Hempelians Revised Confirmation("HRC")

k = e entails dev.e(α) for some α s.t. contains quantifiers only, and does not entail h

(ⅰ)e Hempel-confirms h relative to k e∧k entails dev.e(h)

(ⅱ)e indirectly Hempel-confirms h relative to k e∧k entails dev.e(s) for some s & s∧k entails h

(ⅲ)e Hemple-disconfirms h relative to k e∧k entails ~dev.e(h)


Hypothesis deductive Confirmation("HDC")

For any h, e, k

(ⅰ)e HD-confirms h relative to k h∧k entails e & k does not entail e.

(ⅱ)e HD-disconfrims h relative to k h∧k entails ~e & k does not entail ~e.



참고문헌

Vincenzo Crupi, 2013, "Confirmation", https://plato.stanford.edu/entries/confirmation/